Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.

نویسندگان

  • Wenxiao Pan
  • Dmitry A Fedosov
  • George Em Karniadakis
  • Bruce Caswell
چکیده

We have investigated low Reynolds number flow past single dissipative-particle-dynamics particles (point centers of repulsion), their clusters, and their filaments using dissipative-particle-dynamics (DPD) simulations. The objective of our study was to verify whether DPD particles immersed in a sea of DPD particles behave like Langevin particles suspended in a continuous Newtonian fluid solvent, the basis of Brownian dynamics. Our principal test is to compare two effective DPD radii calculated by independent means. From the calculated coefficients of self-diffusion and viscosity the Stokes-Einstein equation yields an intrinsic radius, and from simulations of flow past a single fixed DPD particle a second radius is calculated from Stokes law. In the limit of small Reynolds number the two radii were found to approach each other. Hydrodynamic interactions were studied with Stokes flow past two DPD particles, and single DPD particles in bounded uniform flow and in-plane Poiseuille flow. Additional simulations examined closely spaced multiparticle clusters (straight-chains and hexagonal-packed aggregates). For all cases of rigid bodies the simulation results are in good agreement with predictions derived analytically from the continuum Stokes system. Elastic filaments, DPD-particle chains with bending resistance, were also simulated to examine hydrodynamically induced distortions, and the results show that the model captures the correct hydrodynamic interactions among filament beads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Hydrodynamic interactions in dissipative particle dynamics

Dissipative particle dynamics !DPD" has recently attracted great interest due to its potential to simulate the dynamics of colloidal particles in fluidic devices. In this work, we explore the validity of DPD to reproduce the hydrodynamic interaction between a suspended particle and confining solid walls. We first show that a relatively large Schmidt number of the DPD fluid can be obtained by in...

متن کامل

Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.

The dynamics of flow-induced translocation of polymers through a fluidic channel has been studied by dissipative particle dynamics (DPD) approach. Unlike implicit solvent models, the many-body energetic and hydrodynamic interactions are preserved naturally by incorporating explicit solvent particles in this approach. The no-slip wall boundary and the adaptive boundary conditions have been imple...

متن کامل

Collective effects in dissipative particle dynamics

We study the detailed dynamics of DPD particles by looking at the velocity autocorrelation function. We observe that in the regimes of interest for simulations, the velocity autocorrelation function reflects the hydrodynamic behavior of these particles.  1999 Elsevier Science B.V. All rights reserved.

متن کامل

Dissipative particle dynamics with energy conservation

– Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 78 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008